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Abstract

Introduction: Numerous studies have collected Alzheimer’s disease (AD) cohort data

sets. To achieve reproducible, robust results in data-driven approaches, an evaluation

of the present data landscape is vital.

Methods:Previous efforts relied exclusively onmetadata and literature.Here,we eval-

uate the data landscape by directly investigating nine patient-level data sets generated

inmajor clinical cohort studies.

Results: The investigated cohorts differ in key characteristics, such as demograph-

ics and distributions of AD biomarkers. Analyzing the ethnoracial diversity revealed

a strong bias toward White/Caucasian individuals. We described and compared the

measured data modalities. Finally, the available longitudinal data for important AD

biomarkers was evaluated. All results are explorable through our web application

ADataViewer (https://adata.scai.fraunhofer.de).

Discussion: Our evaluation exposed critical limitations in the AD data landscape that

impede comparative approaches across multiple data sets. Comparison of our results

to those gained by metadata-based approaches highlights that thorough investigation

of real patient-level data is imperative to assess a data landscape.
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1 BACKGROUND

In the field of Alzheimer’s disease (AD) research, numerous cohort

studies have been conducted, and their collected data build the basis

for a plethora of research projects. However, each of these studies

only reflects patients of a particular subpopulation defined by inclu-

sion and exclusion criteria. This is becoming especially relevant with

respect to the increasing popularity of data-driven approaches and

machine learning.1,2 After analyzing a single cohort, it is mandatory

to demonstrate that results are reproducible in independent, exter-

nal data originating from distinct cohort studies. Furthermore, it is

essential to conduct comparative analyses across data sets to assess

whether the observed patterns are robust.3 Such systematic data-

driven approaches are, however, hampered because patient-level data

are often difficult to access or entirely inaccessible.Moreover, we have

limited knowledge about how the distinct cohort data sets available in

our field compare to each other on a qualitative (eg, overlap of mea-

sured variables) as well as quantitative level (eg, values encountered

in the data).4,5 Thus, to leverage the full potential of collected patient-

level data, it is important to characterize the clinical ADdata landscape

in detail.

1.1 Metadata-driven evaluations of the
Alzheimer’s disease data landscape

Evaluating a data landscape involves organizing and comparing data

sets to: (1) qualitatively assess their collected datamodalities and vari-

ables, and (2) quantitatively describe the demographics of the study

population and distributions ofmeasured variables. Such characteriza-

tion provides a detailed overview of the data accessibility and supports

the design of research projects and future cohort studies. Finally, eval-

uating a data landscape inherently exposes potential flaws with regard

to interoperability between existing data sets and underrepresenta-

tion of important disease or population characteristics.

In the AD field, previous studies have attempted to establish a com-

prehensive view of the AD data landscape as well as to demonstrate

how cohort data sets relate to each other. For example, the European

Medical Information Framework (EMIF) collected metadata of AD

cohort studies by providing data owners with a questionnaire in which

they could specify the variables contained in their data sets. The result-

ing metadata is presented through the EMIF-Catalog.6 Similarly, the

RealworldOutcomes across theAlzheimer’sDisease spectrum for bet-

ter care: Multi-modal data Access Platform (ROADMAP) project gen-

erated an overview of clinical outcomes and data modalities that were

collected in several European AD cohort studies.7 By analyzing meta-

data (partially originating from the EMIF-Catalog), ROADMAP created

the ROADMAP Data Cube, a web application that shows the avail-

ability of AD-related outcomes in a selected set of European demen-

tia cohorts (https://datacube.roadmap-alzheimer.org). Lawrence et al.,

on the other hand, opted for a literature-based approach to assess the

AD data landscape. The authors reviewed publications corresponding

to AD cohort data sets and gathered the contained information.7

RESEARCH INCONTEXT

1. Systematic review: The authors reviewed relevant lit-

erature through bibliographic search engines. Relevant

cohort data sets have been discovered through data por-

tals, data publications, and citations in the literature.

Applications were filed for 18 cohort data collections of

which 9were successful.

2. Interpretation: The presented results illustrate the cur-

rent state of the Alzheimer’s disease (AD) data land-

scape from a patient-level data-centric perspective,

whereas previous investigations relied solely on provided

cohort metadata. This investigation exposes limitations

in data availability and interoperability, and establishes

a detailed overview on what resources current data sets

provide for data-driven analyses.

3. Future directions: This work emphasizes the need for a

common semantic framework for patient-level AD data

to enable the community to work across cohort data sets

and ultimately to generate robust scientific insights to

advance AD research.

1.2 Moving beyond metadata through data-level
investigations

All of the above-mentioned undertakings attempted to evaluate the

AD data landscape solely on the basis of metadata and literature, with-

out investigating the underlying patient-level data. However, review-

ing study protocols can only explain the original design of a given study

and thereby neglects unforeseen changes in procedures or participant

recruitment throughout study runtime. The alternative approach is

a patient-level and data-driven evaluation of the AD data landscape,

which is a tedious and time-consuming endeavor. The first hurdle of

such an approach is gaining access to a sufficient number of cohort data

sets. Data access typically requires completing an application proce-

dure with numerous legal requirements and considerations. If access

is granted, intensive manual curation and investigation of data follow.

Although difficult to establish, a comprehensive data-driven view on

the AD data landscape is crucial, since reliance exclusively on meta-

data assumes that these metadata correctly describe the underlying

data sets and that the data sets are complete. In contrast, a patient-

level anddata-drivenevaluation (1) is not subject to these assumptions,

(2) allows for a quantitative investigationof important cohort statistics,

and (3) illustrates the amount and quality of the data accessible to the

field.

1.3 Novelty and impact of this work

In this work, we aimed at assessing the current AD data landscape

through meticulous investigation and curation of accessible cohort

https://datacube.roadmap-alzheimer.org
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TABLE 1 The investigated AD cohorts and their references

Cohort Consortium Reference

A4 Anti-Amyloid Treatment in Asymptomatic

Alzheimer’s Disease

9

ADNI The Alzheimer’s Disease Neuroimaging

Initiative

10

ANMerge AddNeuroMed 11

AIBL The Australian Imaging, Biomarker &

Lifestyle Flagship Study of Ageing

12

EMIF-1000 EuropeanMedical Information Framework 13

EPAD v1500 European Prevention of Alzheimer’s

Dementia

14

JADNI Japanese Alzheimer’s Disease

Neuroimaging Initiative

15

NACC TheNational Alzheimer’s Coordinating

Center

16

ROSMAP The Religious Orders Study andMemory

and Aging Project

17

data sets on the data level rather than solely relying on metadata

and/or literature. To accomplish this task, we traced down, accessed,

investigated, and compared nine of the major clinical cohort study

data sets available in the AD field. Here, we comprehensively describe

the acquired data and show which data modalities we found in the

data sets as well as their overlaps with other studies. In addition,

we assessed the longitudinal follow-up on the biomarker level and

demonstrated to what extent current AD data are covering the pro-

gression of the disease. Furthermore, we compared the content we

observed in these data sets with the reported findings of metadata-

based approaches.6,8 Finally, we made all results available through

ADataViewer (https://adata.scai.fraunhofer.de), an interactive web-

portal that allows researchers to explore the AD data landscape gen-

erated based on the investigated data sets.

2 METHODS

2.1 Investigated cohorts

We aimed to acquire as many major AD cohort studies as possible to

allow for a thorough investigation of the data landscape. We only con-

sidered data sets that were downloadable, hereby excluding data por-

tals with restricted data access from our investigations. Most of the

data sets we accessed were shared after completing an official data

request process. We applied for access to 18 distinct AD cohort data

sets. Until submitting thiswork for publication,wewere granted access

to nine (Table 1). We discuss the reasons behind failed data access

applications in the Supplementary Text. Notably, not all of the accessed

data sets are observational cohort studies in the strict sense; for more

information, please see the Supplementary Text.

It is important to be aware that not all of these studies followed

the same design or goals. Each study enforced its own recruitment cri-

teria and enrolled participants following distinct selection processes.

Although someaimed for a case-control setting and includeda substan-

tial amount of ADpatients in their cohort, others deliberately excluded

them to focus on early disease progression. Therefore, the cohort data

sets are all subject to inherent biases.

2.2 Generating the summary statistics

To illustrate the content of the data sets, we characterized the demo-

graphics of each cohort and described the encountered statistical dis-

tributions of important AD biomarkers. The demographic variables we

considered are: participant age, sex, and completed years of education.

The AD biomarkers we compared between cohorts are motivated in

the Supplementary Text. In addition, we assessed the diversity of eth-

noracial groups in our acquired AD cohorts, since it is known that eth-

noracial factors may impact AD and related findings.19 More detailed

definitions of the ethnoracial groups can be found in the Supplemen-

tary Text.

For numerical variables, we describe the encountered distributions

using the 25%, 50%, and 75% quantiles of the raw measurements.

For categorical ones, we describe the proportion of study participants

falling into its respective categories. In some data sets, single variables

were reported only numerically given that they were placed within a

defined value range (eg, 400 to 1700). If the measurement appeared

to be outside of this range, the exact number was not reported but

replaced with a cutoff (eg, “>1700″). To allow for calculations, we con-

sidered these values to be equal to thementioned cutoff (here, 1700).

2.3 Generating the data availability map

While establishing a data landscape, it is of high interest to identify

the data modalities that were measured in the underlying studies as

well as to compare their overlaps. However, assessing the availability

of data modalities in clinical cohort data sets is not straightforward.

This process involves intensive and meticulous manual curation of the

acquired data sets and thereby the definition of applicable curation

criteria specifying under which circumstances each data modality is

considered as “available.” Furthermore, it is often necessary to define

a gradual categorization to represent the degree of availability. For

example, exclusivelymeasuring two specific single nucleotide polymor-

phisms (SNPs) is not equal to conducting a genome-wide genotyping of

individuals. Similarly, distributing normalized brain volumes summed

over both hemispheres is less informative than providing the under-

lying raw magnetic resonance (MR) images. The latter would enable

researchers to process the images according to their needs, whereas

the former impedes interoperability to other data sets due to differ-

ences in employed image-processing pipelines. This could hamper cer-

tain analyses such as systematic comparisons across cohorts or valida-

tion approaches.

To enable ameaningful, comparable assessment of the availability of

datamodalities, we established criteria for categorizing the availability

https://adata.scai.fraunhofer.de
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TABLE 2 Description of the investigated cohorts

Cohorts N Healthy MCI AD

Nwith 2+

visits

Follow-up

Interval

(months) Location

Diagnostic criteria

AD

A4 6943 6943 0 0 0: ≈8 US, Canada, Australia AD patients excluded

ADNI 2249 813 1016 389 1978 (88%) 6 USA, Canada NINCDS-ADRDA

AIBL 1378 803 134 181 1019 (74%) 18 Australia NINCDS-ADRDA

ANMerge 1702 793 397 512 1254 (74%) 12 Europe NINCDS-ADRDA

EMIF 1221 386 526 201 0 no follow-up Europe NINCDS-ADRDA

EPAD v1500 1500 1410 80 3 0: 6 Europe NINCDS-ADRDA

JADNI 537 151 233 149 518 6 Japan NINCDS-ADRDA

NACC 40858 15894 3649 11761 27657 (68%) 12 US UDS FormD1

ROSMAP 3627 2514 898 203 3335 (92%) 12 US NINCDS-ADRDA

NOTE: The numbers of diagnosed subjects do not always add up to N, since patients with different dementia diagnoses (eg, Lewy body or frontotemporal

dementia) were excluded. N, Total number of participants; CTL/MCI/AD, Number of participants with the respective diagnosis at study baseline; 2+ visits,

Number of study participants for whom data for at least two time points are available; Follow-up Interval, Approximated regular time interval between

participant visits; Longitudinal data have been collected but are not yet released.

TABLE 3 Distribution of demographic variables and key AD biomarkers encountered in each cohort

Female

% Age Education

APOE

ε4% MMSE CDR CDR-SB Hippocampus A-beta t-Tau p-Tau

A4 57.7 68, 71, 75 14, 16, 18 34.3 28, 29, 30 0.0, 0.0, 0.0 0.0, 0.0, 0.0 6, 7, 7

ADNI 47 68, 73, 78 14, 16, 18 45.6 26, 28, 29 0.0, 0.5, 0.5 0.0, 1.0, 2.0 5948, 6864,

7651

596, 854,

1396

193, 258,

350

17, 24,

34

AIBL 57.9 67, 73, 79 10, 12, 15 36 26, 28, 30 0.0, 0.0, 0.5 0.0, 0.0, 1.0 3, 3, 3 445, 567,

802

238, 366,

516

43, 64,

81

ANMerge 59.3 71, 77, 81 8, 11, 14 38.8 24, 28, 29 0.0, 0.5, 0.5 0.0, 0.5, 4.0 5311, 6270,

7142

EMIF 46.2 62, 68, 74 9, 12, 15 46.8 25, 28, 29 0.5, 0.5, 0.5 6357, 7223,

8004

385, 525,

739

160, 278,

504

37, 52,

74

EPAD 56.9 60, 66, 71 12, 15, 17 37.7 28, 29, 30 0.0, 0.0, 0.0 0.0, 0.0, 0.0 4413, 4808,

5182

899, 1319,

1700

162, 201,

252

13, 17,

22

JADNI 52.7 66, 72, 77 12, 12, 16 46.1 24, 26, 29 0.0, 0.5, 0.5 0.0, 1.5, 3.0 5260, 6133,

7132

254, 315,

454

67, 101,

138

36, 48,

73

NACC 57.2 65, 72, 79 12, 16, 18 40.6 23, 27, 29 0.0, 0.5, 0.5 0.0, 1.0, 4.0 43.5% 46.5% 43.9% 43.9%

ROSMAP 72.8 73, 79, 84 14, 16, 18 25.1 27, 29, 30

NOTE:We show the 25%, 50%, and 75% quantiles of numerical variables at baseline. Categorical variables are given as the proportion of participants falling

into one respective category.APOE ε4%, Proportion of participantswith at least oneAPOE ε4 allele; Hippocampus, A-beta, t-Tau, p-Tau, NACCvalues are given

as the proportion of “abnormal observations”.

of each modality into three discrete stages (Supplementary Table S1):

stage 0, no data were available for the respective modality; stage

1, data were partially available; and stage 2, more complete data or

unprocessed raw data were available.

2.4 Investigating longitudinal follow-up across
studies

To assess how far existing cohort data sets cover the time dimension of

AD, we conducted a thorough investigation of their respective longitu-

dinal follow-up. For each cohort, we evaluated how many participants

were assessed at each follow-up visit and implicitly analyzed the drop-

out over study runtime. Since not all measurementswere performed at

each visit andnot every individual participated in all sample collections,

we further focused on the follow-up and coverage of important AD

biomarkers. Determining the amount of available longitudinal data per

biomarker provides insight on how much information we can exploit

to model and ultimately understand patterns of AD progression. As of

publication of this article, EPAD and NACC are still subject of ongoing

data collection, while ADNI received funding to extend their study and

continue participant recruitment.
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F IGURE 1 Combined ethnoracial diversity found across the
investigated AD cohorts. Table S2 shows the individual compositions
of each cohort

3 RESULTS

3.1 Investigation of the AD data landscape

Altogether, we investigated data from nine studies comprising a total

of 60,004 assessed study participants. Table 2 shows how these par-

ticipants were distributed among the analyzed cohorts. With NACC

being the exception (n = 40,858), all studies recruited individuals in

the low thousands (n = ≈1200 to 3600). According to their diagnosis,

participants could be separated into three groups: cognitively healthy

controls, patients with mild cognitive impairment (MCI), and patients

with AD. Seven of the investigated studies based their diagnoses on

the National Institute of Neurological and Communicative Disorders

and Stroke-Alzheimer’s Disease and Related Disorders Association

(NINCDS-ADRDA) criteria20 which significantly increases the interop-

erability between those data sets, since AD follows the same semantic

description. Depending on each study’s goals, the recruitment process

focusedon enrollingmore or fewer individuals falling into specific diag-

nosis groups.

Although no data are shared through our web-portal, information

on how to access the data sets can be found at https://adata.scai.

fraunhofer.de/cohorts.

3.2 Characterization of the cohorts

Investigation of the cohort demographics revealed considerable dif-

ferences between key demographic characteristics of the acquired

cohorts. EPAD, for example, recruited a comparably young and pri-

marily non-symptomatic cohort,whereas participants ofANMerge and

ROSMAP were significantly older (Table 3). Across all cohorts, the age

range spans roughly from 60 (lowest 25% quantile) to 85 years (high-

est 75% quantile). Theoretically, this opens the opportunity to con-

struct a pseudo-continuum of 25 years of disease history. Further-

more, in most studies, we observed the general tendency that more

female than male participants enrolled into the studies. Overall, most

individuals included in the AD cohort studies were highly educated

(≈14 years on average). As previously mentioned by Whitwell et al., a

high level of education can act as cognitive reserve, possibly conceal-

ing a prodromal manifestation of AD.5 Numerous demographic differ-

ences found between studies may result from distinct recruitment cri-

teria which, again, mirror the individual study goals. Although distinct

recruitment criteria lead to a broader sampling of the AD population,

they reduce the direct comparability between data sets because they

inevitably introduce bias into the data. One key example is recruitment

specifically for participants with AD risk factors (eg, APOE genotype).

This could significantly bias the patterns exhibited in the data in com-

parison to another data set with a lower amount of APOE ε4–positive
participants.

To further highlight one potential bias in AD data, we analyzed

the ethnoracial diversity encountered in the investigated AD cohorts

(Figure 1). An aggregated analysis of all acquired data sets demon-

strates that most of these recruited individuals come from a

White/Caucasian background (79.3%). The second largest group

was Black/African descendants with 11.5%, followed by participants

of Latin/Hispanic heritage with 5.6%. Here, we would like to point out

that these findings are heavily influenced by the study location and

the number of enrolled participants per study. Because the majority

of the studies have been conducted in the United States, their locally

exhibited ethnoracial diversity overshadows signals from European

cohorts. However, the analogous plots for each European cohort

show not only a similar, but even more extreme tendency toward

White/Caucasian individuals (EPAD: 99% white; ANMerge: 98,5%

white; see https://adata.scai.fraunhofer.de/ethnicity).

The ethnoracial composition in the investigated cohorts relies on

the diversity of populations from which the participants have been

recruited. Nonetheless, our results elucidate that there is a substantial

bias toward White/Caucasian in AD data sets and a severe underrep-

resentation of other ethnoracial groups, which, in turn, could be prob-

lematic for developing personalized treatments.

3.3 Availability of data modalities

To analyze which modalities are available in our investigated cohorts

and to explore theoverlaps between them,weassigned a score of avail-

ability per datamodality according to our previously described criteria

(Table S1).

In Figure 2A, we show an overview of the data modalities and

their availability score in all acquired cohort data sets. Commonly

assessedmodalities throughout all studiesweredemographic variables

(eg, age, sex, and education) as well as clinical assessments (eg, Mini

Mental State Examination [MMSE]). Regarding these two modalities,

eight studies were assigned the availability score 2, with EMIF and

AIBL being the only exceptions due tomissing ethnoracial information.

Cerebrospinal fluid (CSF) biomarker measurements were found to be

present in all data sets butANMerge.With regard to autopsy data, only

ROSMAP contained a detailed collection, ranging from simple mea-

surements such as brain weight to comprehensive brain proteomics

https://adata.scai.fraunhofer.de/cohorts
https://adata.scai.fraunhofer.de/cohorts
https://adata.scai.fraunhofer.de/ethnicity
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F IGURE 2 Interoperability of AD data sets. A, Availability of data modalities scored based on the defined criteria. The criteria are explained in
Supplementary Table 1. B, Equivalence of clinical assessment variables across cohorts. PET= positron emission tomography

and transcriptomics. Although seven studies released some structural

MRI data, three of those limited the shared data to processedMRI fea-

tures (eg, brain volumes). In our case, only ADNI, NACC, JADNI, EPAD,

and ANMerge granted access to the raw images.

Although the purpose of this section is to provide a comprehensive

overview about the availability of data modalities, we would like to

emphasize that the presented results are strongly dependent on our

defined curation criteria, and different criteria could lead to deviating

results. In addition, all investigated data sets could hold more informa-

tion than we presented here. Due to our premise of looking exclusively

into those patient-level data that have indeed been shared with us, it

is possible that we missed modalities or resources that are existent

but were not shared (eg, MRI images). Our results can be explored at

https://adata.scai.fraunhofer.de/modality.

3.4 Metadata investigation versus data
investigations

To establish how our observations of data availability differed from

results gained by solely investigating metadata, we qualitatively

compared our findings to the metadata presented in the EMIF

catalog.6*Only four of our investigated studies were listed: ADNI,

ANMerge, EMIF, and EPAD. Although the majority of our findings are

in concordance with the EMIF-catalog, deviations between metadata

and the real data exist. We encountered variables in the data sets that

are reported as absent in the catalog (eg, Global Deterioration Scale in

ANMerge), or were not listed at all. Other variables and even modali-

ties are reported to be present, yet could not be found in the respec-

tive data set. For instance, the catalog states that post-mortem brain

autopsy was performed in ANMerge, for which we could not find any

evidence.

* Accessed on February 2, 2020.

Similar observationsweremadewhen comparing our findings to the

reviewby Lawrence et al.8 Here, for example, the reported longitudinal

follow-up of ANMerge is significantly shorter than what we observed

in the data (reported: 12 months, data: 84 months). In addition, the

reported number of participants with at least two visits does not equal

our findings (reported: 378, data: 1254 participants).

3.5 Availability of data modalities

The finding of common modalities across cohorts does not imply that

the measured variables are interoperable or even comparable on a

semantic level. By mapping a variety of variables across the data sets,

we established an overview of their interoperability (Figure 2B). We

would like to emphasize that the current version of these mappings

is not complete but a proof of concept that a semantic integration of

these data sets is, in theory, possible. However, this integration is cum-

bersome and time-consuming, as many data sets exhibit low interop-

erability and distinct variable naming conventions. An in-depth view of

the preliminary mappings is given at https://adata.scai.fraunhofer.de/

feature_comparison.

3.6 Disease manifestation across cohorts

Toevaluate howseverely patients fromeach cohort have been affected

by AD, we compared the distributions of both cognitive outcomes and

key biomarkers for the cognitively affected patient subgroups (ie, par-

ticipants with an MCI or AD diagnosis). Table 3 shows the distribu-

tions for each complete cohort including healthy controls, MCI, and

AD patients. Analogous tables per diagnosis subgroup can be found at

https://adata.scai.fraunhofer.de/cohorts.

According to the MMSE scores, AD patients from AIBL (quantiles:

15, 20, 25), ANMerge (quantiles: 16, 21, 25), and NACC (quantiles:

https://adata.scai.fraunhofer.de/modality
https://adata.scai.fraunhofer.de/feature_comparison
https://adata.scai.fraunhofer.de/feature_comparison
https://adata.scai.fraunhofer.de/cohorts
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16, 21, 25) showed the worst cognitive performance. ADNI (quan-

tiles: 21, 23, 25) contained patients with fewer cognitive symptoms.

The CDR Dementia Staging Instrument (CDR) Sum of Boxes (CDR-

SOB) scores slightly shift the perspective. Here, ANMerge is the most

affected cohort, with its 25%, 50%, and 75%quantiles of the CDR-SOB

scores being 4, 6, and 9, respectively. AIBL patients scored 3.5, 5, and

7, which slightly contradicts the image painted by the MMSE scores.

Again, ADNI shows the least cognitive symptoms with its CDR-SOB

quantiles being 3, 4.5, and 5.

A comparison of raw biomarker measurements between cohorts

proved to be impossible, since encountered values are on different

scales andmaybe subject to batch effects. Thuswe analyzed howmuch

measurements diverged from their respective control population in

each cohort (Supplementary Text).

The prerequisite for comparative approaches involving biomarker

measurements across data sets is an alignment of their underlying data

models (ie, making data interoperable). In our analysis, we found that

each studyhaddefined its owndatamodel, and variable namesdiffered

between them. This forced us to individuallymap variables to their cor-

responding counterparts in other studies to enable comparisons in the

first place (eg, combine “lh_hippo_volume” and “rh_hippo_volume” and

map to “Hippocampus”). Another difficulty is that numerous data sets

reported values of equivalent variables in different ways. For exam-

ple, CSF biomarker measurements are reported to be either normal

(0) or abnormal (1) in NACC, whereas other studies provide numer-

ical values that were capped at different thresholds between studies

(eg, “ >1700″). All these factors led to a severe lack of interoperability
between data sets, which significantly limits comparative approaches

and restricts them to more standardized variables like clinical assess-

ment scores.

3.7 Longitudinal follow-up

The majority of the investigated studies have collected longitudi-

nal data in the form of repeated measurements. The intervals of

data collection differed across studies (Table 2). Figure 3A displays

the drop-out of study participants over time relative to the size of

the cohort. In this analysis, participants were considered if at least

one measurement was taken at the respective month. However, an

individual’s participation in some assessments does not imply that

all biomarker values were acquired for the same individual on all

visits. Thus we additionally investigated the amount of study par-

ticipants for which select AD biomarkers were measured over time

(Figure 3). Plots for all of the investigated biomarkers can be found at

https://adata.scai.fraunhofer.de/follow-up.

Oneexample biomarker thatwe selectively investigated isCSFamy-

loid beta for which Figure 3B displays the longitudinal coverage. Com-

paring Figure 3Bwith Figure 3A demonstrates that CSF samples were,

if at all, taken only from a small fraction of participants consistently

over time. Summed over all the investigated cohorts, only 273 partic-

ipants (0.5%) have undergone CSF sampling at baseline and again 3

years after. In contrast to CSF, cognitive assessments follow the drop-

out curves quite closely (Figure 3C). Although these findings are not

surprising given the invasiveness of CSF sample collection, they raise

severe concerns regarding the robustness of statistical analysis results

obtained fromCSF data. In turn, this again elucidates that comparative

longitudinal approaches in the AD field are limited mainly to cognitive

assessments or suffer from small sample size.

4 DISCUSSION

In this work, we established an overview of the AD data landscape

by investigating patient-level data from nine major clinical AD cohort

studies.Our results demonstrate that the individual data sets varywith

respect to key characteristics, such as number of enrolled participants

per diagnosis, demographic composition, and distribution of impor-

tant AD biomarkers. Assessing the ethnoracial diversity in the cohorts

exposed a severe overrepresentation of White/Caucasian individuals

compared to other ethnoracial backgrounds. To appraise the availabil-

ity of modalities in each study, we categorized each modality based on

the relative presence of data in each cohort. Another important remark

of our findings is the limitednumber of longitudinal follow-upmeasure-

ments for important AD biomarkers like CSF amyloid beta. Finally, we

made all results explorable through ADataViewer, an interactive web

application that can help researchers to identify cohort data sets that

are suitable for their research.

4.1 Achieving data set interoperability through
one common data model

Our analysis exposed major challenges that severely impede compar-

ative approaches on AD cohort data. Although there has been work

on standardizing data collection21,22 as well as on guidelines defin-

ing an AD-specific data model,23 we still experience a deficit in inter-

operability across AD data sets. The investigated cohort data sets

neither followed a common naming system for variables nor repre-

sented values of the same measurement in an equal manner. On top

of that, some studies shared only processed values instead of the

underlying raw data. This further impedes interoperability, since dif-

ferences in applied processing pipelines inevitably introduce system-

atic biases into the data. One promising approach to increase data set

interoperability could be a comprehensive, AD-specific common data

model. Such a data model could support the alignment and mapping of

variables by providing easy-to-follow guidelines and a dedicated inter-

face for retrospective data harmonization.

4.2 Data limitations hamper disease modeling

In the context of personalized medicine, training models on predom-

inantly White/Caucasian participants can lead to biased models. It

is known that exhibited patterns of biomarker measurements differ

across AD patients from distinct ethnoracial groups.25,26 Given that

https://adata.scai.fraunhofer.de/follow-up
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F IGURE 3 Longitudinal follow-up as the proportion of participants at study baseline (ie, participants were aligned based on their first visit). A,
At least one variable measured. B, CSF amyloid beta. C,MMSE scores. CSF= cerebrospinal fluid. MMSE=MiniMental State Examination

there are only limited data from non-White participants available,

trained models could fail to learn such ethnoracial-specific signals,

which, in turn, would result in poor performance for individuals of non-

White background.

As mentioned previously, the abundance of longitudinal CSF data

was limited throughout all acquired data sets. One possible reason

explaining participants’ reluctance to provide CSF samples, especially

repeatedly, is the invasiveness of its sampling procedure.24 Although

cross-sectional CSF biomarkers can support AD diagnosis, longitudinal

measurements are fundamental to understand disease progression on

abiomarker-level.Given the lowCSFsample sizes currently available, it

remains questionable whether longitudinal analyses of these data can
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generate robust insights on conversions betweennormal and abnormal

values of CSF biomarkers.

4.3 Actionable knowledge through data-driven
landscapes

The evident contradictions found between our data-driven inves-

tigation and the metadata-based approaches (Section 3.4) can be

divided into two types. Type 1 describes that we found variables in

the data sets that were reported as missing according to metadata

resources. From this type of contradiction, we can conclude that

approaches relying solely onmetadata and literature potentially suffer

in accuracy when estimating the real content available in cohort data

sets. Contradiction type 2, on the other hand, resembles cases inwhich

metadata sources reported a variable to be present, while we were

not able to find it in the underlying data. Type 2 contradictions do not

lead to the same conclusion as type 1, since it may be possible that the

respective variables have simply not been shared with us. However, it

is arguable howpractical correctmetadata is if the data it describes are

not themselves available. We believe that our presented comparison

highlights that, despite their significantly higher demand for time and

effort, data-driven investigations should be preferred when assessing

a data landscape.

4.4 Future perspectives

The observed differences in demographic characteristics and disease

risk factors across studies could severely hamper the comparison and

validation of findings across disparate cohorts, since they can sig-

nificantly influence the patterns and trends exhibited in the data.2

Until now, only limited insight is available on how much the heteroge-

neous data landscape limits comparative approaches and cross-cohort

disease modeling on AD data. Further systematic investigations are

required to ensure that results generated on AD data sets are robust

and reproducible across multiple cohorts. To support such endeavors,

we aim to improve the ADataViewer to include more data sets, vari-

able mappings, and the results of systematic data set comparisons in

the future.
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